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This paper presents formulation for the non-stationary response of a Du$ng oscillator
under a seismic excitation process. The excitation process is assumed to be characterized
through wavelet coe$cients and the non-linear system is replaced by a stochastic equivalent
linear system with time-varying parameters. An example ground motion process has been
used to show that the proposed approach gives accurate response estimates in case of mildly
non-linear systems. ( 2001 Academic Press
1. INTRODUCTION

In case of severe excitations, such as earthquake-induced ground motions, the structural
systems may behave non-linearly due to the inelastic excursions. Their behaviour may be
modelled by assuming linear viscous damping and non-linear sti!ness. Such modelling is
also found to be applicable to the systems with skiny hysteretic characteristics. Du$ng's
oscillator is a commonly used oscillator with non-linearity in sti!ness as it represents
several cases of plate, shell and beam vibrations (see reference [1]). The response of Du$ng
oscillator to both deterministic and random excitations has been studied by researchers (see,
e.g., references [1, 2]), and exact or approximate solutions are available in case of
white-noise, stationary and amplitude-modulated non-stationary processes. However, the
non-stationary response explicitly accounting for the frequency non-stationarity has not
received much attention.

Among several approximate methods of analyzing non-linear systems, the use of
equivalent linear techniques is quite common in engineering applications. These techniques
are used to obtain preliminary design estimates and to help in providing qualitative insight
into the nature of the non-linear response. The equivalent linearization was initially
proposed by Krylov and Bogoliubov [3] in the form of method of averaging and was later
developed by Caughey [4] for applying to random vibration problems. The existing
random vibration approach, however, needs to be modi"ed to suitably account for both
amplitude and frequency non-stationarities which are inherent in a ground motion process.
In contrast with the popular approach of using amplitude-modulating functions, these
non-stationarities can be far more e!ectively handled by using the wavelet analytic tools.
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Wavelet analysis has emerged as a very powerful time}frequency analysis tool to tackle
frequency non-stationarity in the earthquake ground motions. Recently, a wavelet-based
linearization technique has been developed by Basu and Gupta [5] to obtain the response
of a Du$ng oscillator to deterministic excitations. Central to this formulation is the
replacement of the non-linear system by a linear system with time-varying properties as
also suggested by Mason [6]. This paper extends this idea to obtain the (stochastic)
response of a Du$ng oscillator under a seismic excitation process and proposes
formulation for the instantaneous natural frequency of the equivalent linear system. The
input}output relationship and the peak response statistics of the equivalent linear system
are obtained by using the formulation of Basu and Gupta [7]. The proposed formulation
has been validated via time}history simulations in case of an example ground motion
process.

2. STOCHASTIC FORMULATION

2.1. GROUND MOTION

Let zK (t) be a zero-mean ground acceleration process with non-stationary Gaussian
characteristics. This process can be characterized by the functionals of its wavelet
coe$cients, E[=2t zK (a, b)] [7], where the wavelet transform, =t f (a, b), of any
given square-integrable function, f (t), and its inverse relationship are, respectively,
given by
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is the translated and dilated form of a suitably chosen wavelet basis function, t (t). Whereas
the parameter, b, localizes the basis function at t"b and its neighbourhood, the parameter,
a, captures the contribution of f (t) to the frequencies in the frequency band of t
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2.2. EQUIVALENT LINEAR PARAMETERS

Let us consider a non-linear oscillator with a non-linear restoring force, g (x), and
a viscous damping, c, per unit mass. The equation of motion for this oscillator, when
subjected to the ground motion process, zK (t), may be expressed as

xK#cxR #g (x)"!zK , (6)

where x is the displacement of the oscillator relative to the base and an overdot represents
di!erentiation with respect to time, t. In the equivalent linearization technique, equation (6)
is replaced by the equivalent linear equation, i.e.,
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In equation (7), u
et

and f
et
, respectively, represent the time-varying equivalent natural

frequency and equivalent damping coe$cient at the time instant, t. Since no non-linearity is
assumed in the damping, the equivalent damping ratio is given by

f
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c
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Wavelet transformation of equation (6) and integration by parts transforms =txK and
=txR to =tG x/a2 and !=tQ x/a, respectively, where =txK and =txR denote the wavelet
transforms of xK (t) and xR (t), respectively, with respect to the basis function, t (t), and
=tG x and =tQ x denote the wavelet transforms of x (t) with respect to tG (t) and tQ (t)
respectively.

These two terms can further be shown to be equal to (L2/Lb2)=tx (a, b) and
(L/Lb)=tx (a, b), respectively, by applying the chain rule of di!erentiation, where=tx (a, b)
denotes the wavelet transform of x (t) with respect to t (t). Thus, equation (6) leads to (see
reference [8])
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where=tg (a, b) denotes the wavelet transform of the non-linear sti!ness function, g (x(t)),
with respect to t (t). On performing similar operations and approximating=t(u2
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x (a, b)) by
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For numerical calculations, we follow a scheme similar to that by Alkemede [9], and
discretize a and b at a
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On using this discretization scheme, the expected square of the di!erence between equations
(9) and (10) may be expressed as
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where E[ ) ] denotes the expectation operator. This term, when summed over all j values
along with a norm of 1/a

j
, represents the expected error in the instantaneous energy of the

response at t"b
i
. We minimize this with respect to u2
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On assuming the non-linear oscillator to be a Du$ng oscillator with the non-linear sti!ness
per unit mass, g(x)"u2
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n
is

the natural frequency of the oscillator for e"0), and on substituting equation (13) into
equation (14), the time-varying equivalent natural frequency squared at the time instant,
t"b
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, is obtained as
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where=tx3 is the wavelet transform of x3 (t) with respect to t (t). It may be noted that since
the equivalence between the original non-linear and the equivalent linear equation has been
obtained in a statistical sense, the expression for the linear frequency in equation (15)
contains terms involving the expectation operator. To simplify the second term in equation
(15), the following result of wavelet analysis (see reference [10]) is used:
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Substituting f"x and h"x3 and taking expectation on both sides, equation (16) leads to
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From this equation, on using the time-localization property of the wavelets and on
discretizing over a and b, the instantaneous value, E[x4(t)]D
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, is obtained as
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Further, expression for the instantaneous mean-square value of the response function, x (t),
is obtained by using f"h"x in the discretized version of equation (16), and thus,
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The assumption of non-stationary response to be locally Gaussian with zero mean leads to
the following relationship between the fourth order and second order moments of the
instantaneous response probability density function,

E[x4(t)]D
t/bi

"3(E[x2(t)]D
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)2. (21)

On using equations (18)}(21) in equation (15), the instantaneous natural frequency of the
equivalent system is obtained as
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density function (PSDF) of the instantaneous response may be used (see reference [7]). If
a modi"ed form of the Littlewood}Paley basis function described by
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In equation (25), f
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) is the damping ratio, f
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i
. For solving equation (24),

knowledge of u
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is essential and therefore, it is required to assume an initial value of u
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solve equation (22) iteratively. For mildly non-linear systems, u
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may be a good initial

value to start with. The iteration is continued till the required convergence is achieved in
u
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.

2.3. RESPONSE STATISTICS

Once the values of u
ei

and f
ei

are obtained, the nth moment of the PSDF of the
instantaneous response may be computed as [7]
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where s
*>+

denotes the indicator function which is equal to one on the interval, [)], and zero
otherwise. Other relevant response parameters and statistics can also be obtained by using
the moments of the PSDF of the instantaneous response. For example, the instantaneous
rate of crossing, X

i
, and bandwidth parameter, j

i
, respectively, are given by
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and

j
i
"S1!

m2
1
D
t/bi

m
0
D
t/bi

m
2
D
t/bi

. (28)

These parameters can be used to obtain the largest peak statistics of the response process,
x(t), of duration, ¹. The probability that the process, Dx (t)D, remains below the level, x,
during the time interval, (0, ¹), is given by [11]
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3. NUMERICAL STUDY

To illustrate the above formulation, an excitation process corresponding to the recorded
ground motion at the Pacoima dam site in case of the 1971 San Fernando earthquake has
been considered. An ensemble of 20 accelerograms has been generated for this process by
using the SYNACC program [12] as in References [7, 13]. The values of the discretization
parameters have been assumed as p"21@4 and Db"0)02 (as in references [7, 13]) and the
ensemble-averaged values of =2t zK (a

j
, b

i
) have been determined for i"1}2047 and

j"!17}4 to characterize the input process. The non-linear Du$ng oscillators taken for
the illustration are assumed to have the linear viscous damping parameter, c/2u

n
"0)02.

Stochastic responses have been estimated from the proposed (wavelet-based) formulation as
Figure 1. Comparison of maximum displacement spectra from simulation and wavelet-based approach in case
of a hard Du$ng oscillator with e"0)1: **, simulation; ----------, wavelet.
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well as from the time}history simulations based on the fourth order Runge}Kutta
algorithm. One step iteration has been found to be su$cient for calculating u

ei
in the

present study.
Figure 1 shows the comparison of the expected maximum displacement response of a set

of hard Du$ng oscillators with e"0)1 and with the linear part of the period, 2n/u
n
,

Figure 2. Comparison of maximum displacement spectra from simulation and wavelet-based approach in case
of a soft Du$ng oscillator with e"!0)01: **, simulation; ----------, wavelet.

Figure 3. Comparison of r.m.s. displacement spectra from simulation and wavelet-based approach in case of
a hard Du$ng oscillator with e"0)1: **, simulation; ----------, wavelet.
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ranging between 0)04 and 0)3 s. The results from the proposed formulation are seen to
match very well with those from the simulation. Similar observations hold for Figure 2,
where soft Du$ng systems with e"!0)01 have been compared. Figures 3 and 4 show this
agreement for the temporal root-mean-square (r.m.s.) displacement response in case of the
hard (e"0)1) and soft (e"!0)01) oscillators respectively. To compare the results of the
proposed approach in greater detail with those from the simulation, "rst 20 s of the
Figure 4. Comparison of r.m.s. displacement spectra from simulation and wavelet-based approach in case of
a soft Du$ng oscillator with e"!0)01: **, simulation; ----------, wavelet.

Figure 5. Comparison of instantaneous r.m.s. displacement time-histories from simulation and wavelet-based
approach in case of a hard Du$ng oscillator with e"0)1 and linear period"0)3 s: **, simulation; ----------,
wavelet.



Figure 6. Comparison of maximum displacement responses from simulation and wavelet-based approach for
di!erent values of e in case of hard Du$ng oscillators with linear period"0)3 s: **, simulation; ----------,
wavelet.
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instantaneous r.m.s. displacement response time history of a hard Du$ng oscillator with
e"0)1 and linear period of 0)3 s have been considered. Figure 5 shows that excellent
agreement is obtained between the two time histories. Further, to see how good the
proposed approach is for di!erent values of e, a set of hard Du$ng oscillators with linear
period of 0)3 s and e ranging between 0)05 and 0)5 have been considered. Figure 6 shows that
the two curves for expected maximum displacement response compare reasonably well up
to a value of e about 0)25. Beyond this, the wavelet-based estimates become poorer. It is thus
implied that the proposed formulation is applicable only for mildly non-linear systems with
low e values.

4. CONCLUSIONS

A stochastic approach based on wavelet transform has been formulated to obtain the
seismic response of a non-linear oscillator with non-linearity in sti!ness only. A Du$ng
oscillator has been considered to obtain the wavelet-based stochastic equivalent linear
parameters. These parameters vary in time and thus, the given non-linear system is replaced
by a time-varying linear system. The proposed formulation accounts for the
non-stationarity, in both amplitude and frequency, in the ground motion process.
A numerical study based on comparison with simulation results shows that this formulation
may be used to obtain reliable response estimates in case of mildly non-linear systems.
Though the proposed formulation is obtained for base-excited oscillators, it may be easily
used for other types of forcing functions also.

ACKNOWLEDGMENTS

This research investigation was supported by the Department of Atomic Energy, Govern-
ment of India under grant number 11/16/94-G. The authors are grateful for this support.



260 B. BASU AND V. K. GUPTA
REFERENCES

1. A. H. NAYFEH and D. T. MOOK 1979 Nonlinear Oscillations. NY, U.S.A.: John Wiley.
2. J. B. ROBERTS and P. D. SPANOS 1990 Random<ibration and Statistical ¸inearization. Chichester,

West Sussex, U.K.: John Wiley.
3. N. N. KRYLOV and N. N. BOGOLIUBOV 1947 Introduction to Nonlinear Mechanics. Princeton, NJ,

U.S.A.: Princeton University.
4. T. K. CAUGHEY 1963 Journal of Acoustical Society of America 35, 1706}1711. Equivalent

linearization techniques.
5. B. BASU and V. K. GUPTA 1999 American Society of Mechanical Engineers Journal of<ibration and

Acoustics 121, 429}432. On equivalent linearization using wavelet transform.
6. A. B. MASON Jr 1979 Ph.D. Dissertation, California Institute of ¹echnology, Pasadena, CA,;.S.A.

Some observations on the random response of linear and nonlinear dynamical systems.
7. B. BASU and V. K. GUPTA 1998 Journal of Engineering Mechanics (American Society of Civil

Engineers) 124, 1142}1150. Seismic response of SDOF systems by wavelet modelling of
nonstationary processes.

8. B. BASU and V. K. GUPTA 1997 Symposium on ¹ime}Frequency and=avelet Analysis, ASME 16th
Biennial Conference on Mechanical <ibration and Noise, Sacramento,;.S.A. On wavelet-analyzed
seismic response of SDOF systems.

9. J. A. H. ALKEMADE 1993 in=avelets: An Elementary ¹reatment of ¹heory and Applications (T. H.
KOORNWINDER, editor), 183}208. New Jersey, ;.S.A.: =orld Scienti,c. The "nite wavelet
transform with an application to seismic processing.

10. I. DAUBECHIES 1992 ¹en ¸ectures on =avelets. Philadelphia, PA, U.S.A.: Society for Industrial
& Applied Mathematics.

11. E. H. VANMARCKE 1975 Journal of Applied Mechanics, ¹ransactions of the American Society of
Mechanical Engineers 42, 215}220. On the distribution of the "rst-passage time for normal
stationary random processes.

12. H. L. WONG and M. D. TRIFUNAC 1979 Earthquake Engineering and Structural Dynamics 7,
509}527. Generation of arti"cial strong motion accelerograms.

13. B. BASU and V. K. GUPTA 1999 Journal of Sound and <ibration 222, 547}563. Wavelet-based
analysis of the non-stationary response of a slipping foundation.


	1. INTRODUCTION
	2. STOCHASTIC FORMULATION
	3. NUMERICAL STUDY
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

